

Ansys Mechanical 2025 R1

### Weld Toolkit Weld Toolki CSV Linearized Structural Nominal Hot Spot Child Grouped Import Weld Weld Add Fillet Add Butt Child Fillet Weld Butt Weld Mesh Effective Cumulative Weld Setup Strength\* Strength\* Results\* Fatigue Fatigue Fatigue Fatigue Notch Fatigue Damage Result\* Welds Welds Result \*

### Main Features:

- Automation and parametric solid weld creation without CAD in Mechanical.
- Evaluate strength according to Eurocode 3, AWS D1.1/AISC 360-16 or user defined codes.
- Evaluate fatigue according to Linearized Stress, Structural Stress, Nominal, Hot-Spot and Notch method.
- Fatigue S-N curves from IIW, Eurocode 3, Eurocode 9, DNV or user defined S-N curves.

### Business Value:

- Ansys unique automatic weld creation replaces manual CAD work, meshing & contact setup.
- Ease of use in pre/post processing. Evaluation of hundreds of welds in minutes instead of days.
- Visualize the strength utilization, calculated weld thickness or fatigue life direct on the model.
- Automatic weld report for each selected analysis.





### Save and Import Weld Configuration



- Welds and result objects can be reused between models and projects to speed up preparation and post processing. By using "Named Selections" the scooping is applied automatic.
- Save Weld Configuration writes a text file in the current solution folder or "user\_files". All or selected fillet/butt weld and result objects form the current analysis are exported. The file can be used as a template for creating user defined weld configurations.
- Import Weld Configuration reads a weld configuration file and creates all weld objects in the file unless an object with the same name already exists.
- The Save/Import option can be used to copy the weld setup from one analysis to another. It can also be used if the weld configuration is defined outside of Mechanical or by another automation app/Wizard.



### **Optimize Bonded Contacts**



- Bonded face to face contacts can be optimized for weld strength evaluation by setting the smaller face as "Contact" and the larger face as "Target" and change behavior to "Asymmetric".
- Select the "Connections" folder, "Contacts" folders or individual "Contacts" and click the button "Optimize Bonded Contacts" to update all selected objects.
- An info message will show the number of selected contacts to optimize and how many that was updated.





### **Create Weld Contacts**



- Managing contacts for large assemblies with many welds is important to get consistent results.
- "Create Weld Contacts" will create a "Weld Contacts" Connection folder and create bonded contacts for all parts containing "weld" in the name.
- Delete any existing duplicate weld contacts in other contacts folders.
- The created contacts can be edited.
- Tip: Multi-select parts in Geometry group and press "F2" to rename.





### Weld Contacts Match



- For tetrahedron meshed parts the weld contact match can be used to create a "Weld Contacts Match" folder in "Mesh Edit" and create corresponding mesh imprint for the weld contacts.
- The mesh imprint will improve the contact calculation as the contact and target mesh will match.
- Note: If the parts belong to a multi-body part with option "imprint" this is not needed.





### Add Fillet and Butt Weld



- The Fillet and Butt weld feature can model weld joints with solid elements to get best possible accuracy of the joint stiffness, also including intermittent weld.
- The weld geometry is parametric and is visualized with a green line at the weld throat section.
- To create welds, select a group of edges located at the weld root and the connected faces. Select material and throat thickness.
- The weld size and properties can be changed without needing to re-mesh or update the contacts in the model. The weld meshing and contact setup is fully automatic and done when solving.









### Intermittent Welds and Optimization

- Intermittent welds saves cost in production using less weld filler material and shorter welding time.
- The throat thickness, section length and spacing can be defined as parameters in a design point study to see the impact on weld mass, weld utilization, local deformation and stress.





### Weld line export



The defined weld lines can be exported to Design Modeler or Space Claim line files.





### Virtual Fillet/Butt Welds



- Pre-define welds to simplify post processing and provide a visual representation of all welds in the model.
- Check that there is no double definitions of welds.
- Context actions to add Weld Strength results

| D | etails of "Lbeam2Cylin | der" ·····              |  |  |  |  |  |
|---|------------------------|-------------------------|--|--|--|--|--|
| - | Weld Section           |                         |  |  |  |  |  |
|   | Scoping Method         | Geometry Selection      |  |  |  |  |  |
|   | Geometry               | 8 Edges                 |  |  |  |  |  |
| - | Reference Face         | ^                       |  |  |  |  |  |
|   | Scoping Method         | Geometry Selection      |  |  |  |  |  |
|   | Geometry               | 8 Faces                 |  |  |  |  |  |
| - | Weld Geometry          |                         |  |  |  |  |  |
|   | Geometry select        | Manual select (no weld) |  |  |  |  |  |
|   | Туре                   | Single sided            |  |  |  |  |  |
|   | Weld side              | Тор                     |  |  |  |  |  |
|   | Throat thickness       | 3 mm                    |  |  |  |  |  |
|   | Free end offset        | 0 mm                    |  |  |  |  |  |
|   | Total Weld Length      | 37698 mm                |  |  |  |  |  |

÷

F"Lbeam2Cylinder"





# **Child Setup**



- The Child Setup let you re-use the Add Welds Group setup from one linked parent analysis.
- If updating the weld setup in the parent analysis the linked setup will automatically get the new data.





### Weld Strength

- Weld Strength results evaluate stresses and forces from each throat section in the selected group of welds.
- Weld utilization factor, Wuf, can be post processed according to Eurocode 3 or AWS D1.1/AISC 360-16 or user defined codes.
- Results are plotted on the geometry and listed in csv files used by the "Weld Report" feature or external use in e.g. Excel.
- Standard Mechanical features "Calculate Time History" and "Maximum Over Time" can be used to see the worst case for all loads steps and all welds in one plot!







## Weld Strength – Stress components



- The weld strength evaluation is based on the "directional method" where the structural component stresses in the weld section is derived from section forces. The method is therefore mesh size independent.
- The stresses are evaluated in a local coordinate system that follows the geometry.
- Results can be evaluated at different section angles, α, and in addition to the component stresses the force angle, Φ, between the weld line and the total force, *Fsum*, and local bending moment, *My*, around local weld axis Y is available to use in the evaluation.





### Weld Strength – Path & Average



- A path plot of a single weld seam can be displayed in the Graph window.
- Results can be averaged in different ways, Group, Section (Constant), Section (Linear), Segment, Floating





### Weld Strength Shell



- Weld Strength Shell result can be used to evaluate large shell models with multiple cruciform joints.
- Result average can be "Section" or "Element". (Element size is >> the weld throat size.)





### edrmedeso.com

b)

Shape and

### Lamellar Strength

- The risk for lamellar tear can be evaluated according to Eurocode 3 with the "Lamellar Strength" result.
- Depending on the weld shape, weld position, boundary conditions and loading direction the required material quality can be evaluated.

position of  $Z_{\rm b} = -25$ **V** welds in T- and cruciform- and cornerconnections corner joints  $Z_{\rm h} = -10$ single run fillet welds  $Z_a = 0$  or fillet  $Z_{\rm h} = -5$ welds with  $Z_n > 1$  with buttering with low strength weld material multi run fillet welds  $Z_{\rm b} = 0$ **\$\$** with appropriate welding sequence to reduce shrinkage effects partial and full  $Z_{\rm b} = 3$ penetration welds AA @ partial and full  $Z_{\rm b} = 5$ penetration welds  $Z_{b} = 8$ corner joints







### <u>۲</u> <u>т</u> \* Name 🝷 Search Outline 🛛 🖌 🧅 C: Weld Strength Tubes Fillet Weld Strength Pipe 1 Seqv LC3 Equivalent Stress FE 🖰 Global results 🗸 🍘 Total Deformation 🖓 Equivalent Stress 1 Time: 3 - 🗸 🎯 Equivalent Stress FE 2021-05-27 12:35 🖓 Equivalent Stress FE Weld NUMMAT 👝 894.4 Max CONTSTAT 470 355 Details of "Equivalent Stress FE" - 4 □ × 304.29 253.57 Scope 202.86 Scoping Method Result File Item 152.14 Layer Entire Section 101.43 Position Top/Bottom 50,714 Item Type Element Name ID 🖵 1.8946 Min Solver Component IDs 185,186,190 Lo Global IDs All Definition Equivalent (von-Mises) Stress RST Type Time By Display Time 3. s

Home

Result

Display

## Mesh Result

E-based results for fillet and butt welds can be easily plotted using the predefined items in the drop-down menu Mesh Results.

Mesh

Results \*

RST



Selection

Automation

Weld Toolkit



^ 🛛 🝞



### Fatigue methods



The fatigue evaluation is based on IIW methods and uses a selected S-N curve (FAT class) to derive the fatigue life and damage based on the stress range, Δσ, from the selected fatigue method and load case.





## Fatigue S-N curves and MSC Theory

- The S-N curves are independent from Engineering Data and is applied for each fatigue result independent.
- User defined curves can be added in addition to the curves from IIW, Eurocode 3, Eurocode 9 and DNV.
- Mean Stress Correction can be applied in all fatigue methods.





# Fatigue Load Case Definition

1. Zero Based

Calculates a pulsating stress range (Loading Ratio = 0).

- Fully Reversed Calculates an alternating stress range (Loading Ratio = -1).
- **3.** Ratio (Loading Ratio) Calculates a stress range with custom Loading Ratio.
- 4. Load Combination Calculates the stress range between two selected steps.
- 5. Load Scanning Calculates the maximum stress range within the selected steps.
- 6. Solution Combination Calculates the stress range from summing the steps in Solution Editor.
- 7. Solution Scanning Calculates the maximum stress range within the steps in Solution Editor.
- 8. Random Calculates the damage using the "Steinberg formulation"





### edrmedeso.com

| CSV | Fati | igue | 1 |
|-----|------|------|---|
|     |      |      |   |

### • CSV Fatigue is a generic method to post process fatigue from stress results saved in a CSV text file.

|     |             |          | D | etails of "CSV Fatigue" | " ······ <b>∓</b> ₽ ⊡ × |
|-----|-------------|----------|---|-------------------------|-------------------------|
| A   |             |          | Ξ | CSV Geometry            |                         |
| Fil | e Home      | Insert   |   | Scoping Method          | Geometry Selection      |
|     | e nome      | moere    |   | Geometry                | 1 Face                  |
| 622 |             |          | Ξ | CSV Method              |                         |
| G3  | 0 *         |          |   | CSV File                | C:\MagnusG\MaxPrin.csv  |
|     | ^           | P        |   | CSV Stress              | ST (MPa)                |
|     | A           | D        |   | Result Location         | Node                    |
| 1   | Node Number | S1 (MPa) |   | FAT Class               | IIW FAT50 steel         |
| 2   | 6663        | 110.07   |   | FAT (@ Nfat cycles)     | 50 MPa                  |
| 3   | 6665        | 110.06   |   | FAT factor              | 1                       |
| 4   | 6687        | 102.46   |   | Nfat                    | 2000000                 |
| 5   | 6688        | 102.46   |   | Nc Nc                   | 1000000                 |
| 6   | 7030        | 102 34   |   | Slope m1                | 3                       |
| 7   | 7030        | 102.34   |   | Slope m2                | 22                      |
| /   | 7031        | 102.33   | Ξ | Load case definition    |                         |
| 8   | 7032        | 102.32   |   | Load Type               | Zero Based              |
| 9   | 7033        | 102.32   |   | Load scale factor       | 1                       |
| 10  | 7034        | 102.32   |   | Mean Stress Theory      | None                    |
| 11  | 7035        | 102.31   | - | Fatique Result          | None                    |
| 12  | 7036        | 102.31   |   | Result Item             | Life [N]                |
| 13  | 7037        | 102.3    | Ξ | Definition              |                         |
| 1.0 | 7037        | 102.3    |   | Ву                      | Time                    |
| 14  | /038        | 102.3    |   | Display Time            | Last                    |





## Linearized Fatigue

- Linearized Fatigue evaluates the linearized stress through the material thickness for all matching nodes of a selection between inside and outside of a solid part. This allows for efficient evaluation of e.g. nozzles and other pressure vessels according to ASME.
- All stress types (*Principal, Sum of Principal, Intensity, Equivalent, Normal, Shear*) and stress items (*Membrane, Bending, Membrane+Bending, Peak, Total*) can be used.







| Inside face              |                                 |
|--------------------------|---------------------------------|
| Scoping Method           | Geometry Selection              |
| Geometry                 | 3 Edges                         |
| Outside face             |                                 |
| Scoping Method           | Geometry Selection              |
| Geometry                 | 3 Faces                         |
| Linearized Method        |                                 |
| Linearized Parent        | None                            |
| Stress Type              | Linearized Absolute Principal S |
| Stress Item              | Membrane+Bending                |
| Result Side              | Inside                          |
| Corner Nodes Only        | Yes                             |
| Pinball Region           | 12 mm                           |
| S-N curve                |                                 |
| FAT Class                | IIW FAT100 steel                |
| FAT (@ Nfat cycles)      | 100 MPa                         |
| FAT factor               | 1                               |
| Nfat                     | 2000000                         |
| Nc                       | 1000000                         |
| Slope m1                 | 3                               |
| Slope m2                 | 22                              |
| Load case definition     |                                 |
| Load Type                | Zero Based                      |
| First time               | 1 s                             |
| Load scale factor        | 1                               |
| Cycles per block         | 1                               |
| Mean Stress Theory       | None                            |
| Fatigue Result           |                                 |
| Result Item              | Life [N]                        |
| Create Path              | Click here to create path!      |
| Linearized Stress Result |                                 |
| Membrane+Bending (In     | side) 215.8 MPa                 |
| Membrane+Bending (Ce     | enter) 112.2 MPa                |
| Membrane+Bending (O      | utside) -45.06 MPa              |



## **Structural Stress Fatigue**



- Structural Stress fatigue uses the stress from a fillet weld strength result as input for life calculation. The weld stress is based on nodal forces in the weld section and both shell and solid models are supported.
- Stress type can be any of the weld section component stresses ( $\sigma_{\perp}$ ,  $\sigma_{\parallel}$ ,  $\tau_{\perp}$ ,  $\tau_{\parallel}$ ), derived stresses ( $\sigma_{b}$ ,  $\sigma_{s}$ ,  $\sigma_{tot}$ ,  $\tau_{tot}$ ) or the equivalent stress defined in the selected weld code ( $\sigma_{eqv}$ ). E.g. DNV Fatigue (2.3.4);  $\sigma_{eqv} = \Delta \sigma_{w} = \operatorname{sqrt}(\Delta \sigma_{\perp}^{2} + \Delta \tau_{\perp}^{2} + 0.2^{*} \Delta \tau_{\parallel}^{2})$



| Petails of "Fillet Weld Strengt | 'h" ···································· | A: Model, Static Structural       | - [' | Details of Structural Sti | ress ratigue               | A: Model, Static Structural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------|------------------------------------------|-----------------------------------|------|---------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weld Section                    |                                          | Fillet Weld Strength              | E    | Weld Section              |                            | Structural Stress Fatigue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Scoping Method                  | Geometry Selection                       | Expression: RES08012<br>Unit: MPa |      | Scoping Method            | Geometry Selection         | Time: 1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Geometry                        | 5 Edges                                  | Time: 1 s                         |      | Geometry                  | 5 Edges                    | 2022-06-29 09:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Reference Face                  |                                          | 2022-06-29 08:55                  | F    | - Structural Method       |                            | 👝 1e+10 Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Scoping Method                  | Geometry Selection                       | 52.537 Max                        |      | Weld Result Parent        | Fillet Weld Strength 1d937 | 3.4218e9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Geometry                        | 6 Faces                                  | 46.714                            |      | Strace Type               | Same                       | 1.1709e9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Weld Geometry                   |                                          | 35.068                            |      | Stress type               | SEQV                       | 1.3709e8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Geometry select                 | A7 Fillet Welds_Id935                    | 29.245                            |      | - S-N CUIVE               |                            | 4.6909e7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Туре                            | Single sided                             | 23.422                            |      | FAT Class                 | DNV T.2-1 W3               | - 1.6051e7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Weld side                       | Тор                                      | 17,599                            |      | FAT (@ Nfat cycles)       | 45.35 MPa                  | 1.8794e6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Min thickness                   | 7 mm                                     | 5.9538                            |      | FAT factor                | 1                          | 6.4308e5 Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Calculate Min Thickness         | No                                       | 🖵 0.1309 Min                      |      | Nfat Nfat                 | 1000000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Free end offset                 | 0 mm                                     |                                   |      | Nc                        | 1000000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Weld Length               | 1346 mm                                  |                                   |      | Slope m1                  | 3                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Weld Evaluation                 |                                          | Max                               |      | Slope m2                  | 5                          | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Weld code                       | DNV Fatigue (2.3.4)                      | 1d 405                            |      | Ncutoff                   | 1000000000                 | Iduass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Material                        | Unknown                                  |                                   | E    | Load case definition      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Correlation factor Bw           | 0.8                                      |                                   |      | Load Type                 | Zero Based                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Safety factor M2                | 1.25                                     |                                   |      | First time                | 1 \$                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Weld strength Fu                | 360 MPa                                  |                                   |      |                           | 1                          | and the second se |
| Weld Result                     |                                          |                                   |      |                           | 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Result Item                     | Seqv                                     |                                   |      | Cycles per block          | 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Result averaging                | Floating                                 |                                   | E    | - Fatigue Result          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Floating factor                 | 6                                        |                                   |      | Result Item               | Life [N]                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



# **Nominal Fatigue**



- Nominal fatigue is similar to Ansys fatigue module and evaluates the fatigue from surface stress of a part.
- Stresses type can be any of: Principal, Sum of Principal, Intensity, Equivalent, Shear (Max), Normal X/Y/Z or Shear XY/YZ/XZ.
- Stress singularities on boundary conditions can be excluded with a new option.





# **Hot-Spot Fatigue**



- Hot-Spot Fatigue is a common method to extrapolate surface stress remote from a hot-spot location.
  It is a way to derive the Geometric stress at a weld toe and eliminate the stress singularities at the toe.
- Available stresses types: Normal, Parallel, Shear, Shear (Max), Principal (no limit), Principal (IIW limit), Principal (normal), Principal (parallel), Equivalent, Equivalent (DNV).
- Weld codes defines the location for extrapolation and corresponding fatigue class (FAT).
- It can be used with the "Add fillet weld" to automatically define the offset based on weld size.
- The "Weld" mesh control can create suitable mesh imprints for extrapolation locations on shell models.





### **Effective Notch Fatigue**



- Effective Notch Fatigue is used to evaluate the weld toe or weld root fatigue using a detailed notch mesh (in a sub model). The notch is usually a 1 mm fillet and used together with a specific fatigue class (FAT).
- Available notch stress: Tangential, Parallel, Principal, Sum of Prin., Stress Int., Equivalent or Shear (Max).
- The result from the notch is plotted on the notch edge (similar to Hot-Spot) and is excluding results on BC.





| D | etails of "Effective Notch I | Fatigue Toe"             |
|---|------------------------------|--------------------------|
| Ξ | Effective Notch Edge         |                          |
|   | Scoping Method               | Geometry Selection       |
|   | Geometry                     | 2 Edges                  |
| - | Effective Notch Face         |                          |
|   | Scoping Method               | Named Selection          |
|   | Named Selection              | Toe face                 |
| Ξ | Effective Notch Method       |                          |
|   | Stress Type                  | Tangential (IIW default) |
|   | Exclude boundary nodes       | Yes                      |
| - | S-N curve                    |                          |
|   | FAT Class                    | IIW FAT225 R1 steel      |
|   | FAT (@ Nfat cycles)          | 225 MPa                  |
|   | FAT factor                   | 1                        |
|   | Nfat Nfat                    | 2000000                  |
|   | Nc Nc                        | 1000000                  |
|   | Slope m1                     | 3                        |
|   | Slope m2                     | 22                       |
|   | Ncutoff                      | 1000000000               |
| Ξ | Load case definition         | ^                        |
|   | Load Type                    | Zero Based               |
|   | First time                   | 1 s                      |
|   | Load scale factor            | 1                        |
|   | Cycles per block             | 200000                   |
| - | Fatigue Result               |                          |
|   |                              |                          |





## **Cumulative Fatigue**



- The total damage from a duty cycle can be evaluated using Cumulative Fatigue.
- Each individual event (load case with number of cycles) is defined using one of the available methods and then grouped in the model tree together with the Cumulative fatigue result object.





### Child Result



- The Weld Child Result let you select a parent result and plot a different result item (and/or time/set number) while keeping all other settings the same as in the parent result.
- This result object does not output any summary tables to the bolt report since they are listed for the parent result object. When clearing and edit the parent the children are updated as well.





# **Grouped Result**

- Grouped Weld Strength/Fatigue result combine many results within the same group in the model tree or from selected results from different analysis using the Solution Editor into one plot.
- The results absMax, Max or Min results can be evaluated to see the overall max from several load cases.







HS⊿ Hot Spot Fatigue B1 HS⊿ Hot Spot Fatigue C1

JIS Hot Spot Fatigue A1

/밤stand Hot Spot Fatigue A0

Grouped Weld Fatigu

🖉 🦰 Fatigue

12

Fillet Weld Strength B1

Fillet Weld Strenath C1

Fillet Weld Strength A1

Fillet Weld Strength A0

Grouped Weld Strength Wuf

### **Worksheet Preview**

- The "Worksheet Preview" is a feature in the *Report* Generator app that displays all details of a weld object including the result summary tables in the "Worksheet" window. (Report Generator license is not needed.)
- This feature is useful to look at the design values and different result items in the summary tables.





### Fillet Weld Strength Add Weld Preview

### Fillet Weld Strength Add Weld

### Table 1. Fillet Weld Strength Add Weld property list

| Result Name                                        |              | Fillet Weld Strength Add Weld                | ld 3074                |
|----------------------------------------------------|--------------|----------------------------------------------|------------------------|
| Weld Geometry                                      |              | Geometry select                              | A3 Fillet Welds_Id2978 |
| Weld type                                          | Single sided | Weld Side                                    | Тор                    |
| Min thickness                                      | 3.0 mm       | Calc Min thickness                           | No                     |
| Free end offset                                    | 0.0 mm       |                                              |                        |
| Total Weld Length                                  | 177.1 mm     |                                              |                        |
| Weld Evaluation                                    |              |                                              |                        |
| Weld code                                          | Eurocode 3   | Material grade                               | S235                   |
| Factor, $a_w$                                      | 0.6          | Factor, $\beta_w$                            | 0.8                    |
| Nominal weld strength, f <sub>u</sub>              | 360. MPa     | Safety factor, Y <sub>M2</sub>               | 1.25                   |
| Dimensional equivalent stress, f <sub>u.Seqv</sub> | 360. MPa     | Dimensional normal stress, f <sub>u.Sn</sub> | 259.20 MPa             |
| Weld Result                                        |              |                                              |                        |
| Weld result item                                   | Seqv         | Scale Factor Value                           | 1.0                    |
| Weld result averaging                              | Floating     | Floating factor                              | 6.0                    |
| Weld result location                               | Auto         | Stress Type (Wuf calculation)                | Absolute Stress        |
| Definition                                         |              |                                              |                        |
| Ву                                                 | Time         | Display Time                                 | Last                   |

### Table 2. Fillet Weld Strength Add Weld summary

| Group | Sect Id | Sect L<br>[m] | a <sub>min</sub><br>[mm] | FX (radial)<br>[N/m] | FY (para)<br>[N/m] | FZ (axial)<br>[N/m] | FT (total)<br>[N/m] | MY (para)<br>[Nm/m] | Phi<br>[deg] |
|-------|---------|---------------|--------------------------|----------------------|--------------------|---------------------|---------------------|---------------------|--------------|
| 1     | 941     | 0.095         | 3.0                      | -3.327e+04           | 7.808e+04          | 1.738e+05           | 1.934e+05           | 6.644e+02           | 66.2         |
| 1     | 944     | 0.024         | 3.0                      | -3.047e+05           | -4.922e+04         | 3.160e+05           | 4.417e+05           | 5.509e+02           | 83.6         |
| 1     | 947     | 0.059         | 3.0                      | -1.281e+04           | -6.635e+04         | -1.078e+05          | 1.273e+05           | 3.137e+02           | 58.6         |

### Table 3. Fillet Weld Strength Add Weld summary

| Group | Sect Id | Wuf<br>[-] | σ <sub>eqv</sub><br>[MPa] | σ <sub>norm</sub><br>[MPa] | т <sub>рага</sub><br>[MPa] | т <sub>norm</sub><br>[MPa] | т <sub>tot</sub><br>[MPa] | σ <sub>para</sub><br>[MPa] | σ <sub>bend</sub><br>[MPa] | σ <sub>struc</sub><br>[MPa] |
|-------|---------|------------|---------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|----------------------------|-----------------------------|
| 1     | 941     | 0.244      | 87.8                      | -48.8                      | 26.0                       | 33.1                       | 42.1                      | -49.3                      | 442.9                      | 491.7                       |
| 1     | 944     | 0.564      | 149.1                     | -146.3                     | -16.4                      | 2.7                        | 16.6                      | -86.8                      | 367.2                      | 513.5                       |
| 1     | 947     | 0.184      | 66.3                      | 22.4                       | -22.1                      | -28.4                      | 36.0                      | 1.6                        | 209.1                      | 231.5                       |



## Weld Report



- A HTML formatted report of all welds and weld results including any comments, figures and images is created with a click on "Weld Report " using the Report Generator app. (Report Generator license is not needed.)
- The report can be imported to Microsoft Word (Insert>Text from File...).







### User defined Weld codes & S-N Curves



- Weld Settings control panel to edit default values for add welds, strength and fatigue results.
- User define weld strength codes and material grades can be added in addition to Eurocode 3 and AWS.
- User defined weld fatigue S-N curves (FAT class) can be added in addition to IIW, Eurocode 3/9 and DNV.

| General Settings  Show Weld Id number  Yes |
|--------------------------------------------|
| Show Weld Id number Yes                    |
|                                            |
| Store Results At All Available Time Points |
| Post processing MAPDL license Default      |
| Add Weld Settings                          |
| Weld Strength Settings                     |
| Default weld size 3 mm                     |
| Weld size increment 1 mm                   |
| Maximum Weld size 99 mm                    |
| Calculate Time History No                  |
| Always Plot Fillet Weld No                 |
| Always Plot Weld CSYS No                   |
| Always Plot APDL CSYS No                   |
| Plot Weld Node CSYS No                     |
| Condensed Segment CSV No                   |
| Print Group average in Weld Report No      |
| Weld Force Extraction Contact Element      |
| Weld Fatigue Settings                      |
| Weld Code Editor                           |
| Edit Weld Code No                          |
| FAT Class Editor                           |
| Edit FAT Class No                          |

| Material grad | de                      |                            |               |               |                        | ×                   |
|---------------|-------------------------|----------------------------|---------------|---------------|------------------------|---------------------|
| 1             |                         |                            |               |               |                        |                     |
| Name          | Weld Yield Strength, Fy | Weld Ultimate Strength, Fu | Factor, alfaw | Factor, betaw | Safety factor, gammaM2 | Load factor, gammaL |
| S235          | 0 [MPa]                 | 360 [MPa]                  | 0.6           | 0.8           | 1.25                   | 0                   |
| S275          | 0 [MPa]                 | 410 [MPa]                  | 0.6           | 0.85          | 1.25                   | 0                   |
| S355          | 0 [MPa]                 | 470 [MPa]                  | 0.6           | 0.9           | 1.25                   | 0                   |
| S420          | 0 [MPa]                 | 520 [MPa]                  | 0.6           | 1             | 1.25                   | 0                   |
| S460          | 0 [MPa]                 | 540 [MPa]                  | 0.6           | 1             | 1.25                   | 0                   |
|               |                         |                            |               |               |                        |                     |
|               | FAT Class List          |                            |               |               |                        | ×                   |
|               | <u>i</u>                |                            |               |               |                        |                     |

| FAT Class List    |                     |         |        |          |            |           |           | ×         |
|-------------------|---------------------|---------|--------|----------|------------|-----------|-----------|-----------|
|                   |                     |         |        |          |            |           |           |           |
| FAT Class         | FAT (@ Nfat cycles) | Nfat    | NO     | Nc       | Ncutoff    | Slope, m0 | Slope, m1 | Slope, m2 |
| IIW FAT 160 steel | 160 [MPa]           | 2000000 | 0      | 10000000 | 1000000000 | 3         | 5         | 22        |
| IIW FAT125 steel  | 125 [MPa]           | 2000000 | 314018 | 1000000  | 1000000000 | 5         | 3         | 22        |
| IIW FAT112 steel  | 112 [MPa]           | 2000000 | 137805 | 1000000  | 1000000000 | 5         | 3         | 22        |
| IIW FAT 100 steel | 100 [MPa]           | 2000000 | 58902  | 1000000  | 1000000000 | 5         | 3         | 22        |
| IIW FAT90 steel   | 90 [MPa]            | 2000000 | 26727  | 1000000  | 1000000000 | 5         | 3         | 22        |
| IIW FAT80 steel   | 80 [MPa]            | 2000000 | 11049  | 10000000 | 1000000000 | 5         | 3         | 22        |
| IIW FAT71 steel   | 71 [MPa]            | 2000000 | 4514   | 10000000 | 1000000000 | 5         | 3         | 22        |
| IIW FAT63 steel   | 63 [MPa]            | 2000000 | 1842   | 10000000 | 1000000000 | 5         | 3         | 22        |
| IIW FAT56 steel   | 56 [MPa]            | 2000000 | 761    | 10000000 | 1000000000 | 5         | 3         | 22        |



### **EDRMedeso licensing features**

- Starting in 2025 the EDRMedeso apps uses a cloud license server connecting via internet HTTPS protocol (over the standard TCP port 443) to activate and check out/in the license.
- The cloud license server eliminates the need for running a local license server or to manage specific network/firewall settings. Any Windows PC (physical or virtual) can connect.
- When using an app feature in pre or post processing the app license is checked out and the "Active License" button turns green. You may release the app license from the current PC by clicking the "Active License" button that then turns grey indicating that the license is free.
- If the license is not available a warning message is displayed in Mechanical.
- The app license is installed using the "Install License File" and the license status and current users is listed using the "Check License Status".









### References

Weld Strength calculation according to:

Eurocode 3: EN 1993-1-8:2005. Design of steel structures - Part 1-8: Design of joints [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]

AWS D1.1/AISC 360-16 Specification for Structural Steel Builds

Lamellar Strength according to:

Eurocode 3: EN 1993-1-10:2005. Design of steel structures - Part 1-10: Material toughness and throughthickness properties [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]

Weld Fatigue calculation according to:

Recommendations for Fatigue Design of Welded Joints and Components, Second Edition. A.F. Hobbacher. International Institute of Welding (IIW)

RP-C203: Fatigue design of offshore steel structures DNVGL-RP-0005:2014-06

EN 1993-1-9:2005 Eurocode 3: Design of steel structures - Part 1-9: Fatigue [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]

EN 1999-1-3:2007 Eurocode 9: Design of aluminum structures - Part 1-3: Structures susceptible to fatigue [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]



### Thank You!

Magnus Gustafsson

